Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Water (Switzerland) ; 15(7), 2023.
Article in English | Scopus | ID: covidwho-2306223

ABSTRACT

UV-LED irradiation has attracted attention in water and wastewater disinfection applications. However, no studies have quantitatively investigated the impact of light intensity on the UV dosage for the same magnitude of disinfection. This study presents a powerful 280 nm UV-LED photoreactor with adjustable light intensity to disinfect municipal wastewater contaminated with E. coli, SARS-CoV-2 genetic materials and others. The disinfection performance of the 280 nm LED was also compared with 405 nm visible light LEDs, in terms of inactivating E. coli and total coliforms, as well as reducing cATP activities. The results showed that the UV dose needed per log reduction of E. coli and total coliforms, as well as cATP, could be decreased by increasing the light intensity within the investigated range (0–9640 µW/cm2). Higher energy consumption is needed for microbial disinfection using the 405 nm LED when compared to 280 nm LED. The signal of SARS-CoV-2 genetic material in wastewater and the SARS-CoV-2 spike protein in pure water decreased upon 280 nm UV irradiation. © 2023 by the authors.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2082110

ABSTRACT

The current pandemic crisis caused by SARS-CoV-2 has also pushed researchers to work on LEDs, especially in the range of 220-240 nm, for the purpose of disinfecting the environment, but the efficiency of such deep UV-LEDs is highly demanding for mass adoption. Over the last two decades, several research groups have worked out that the optical power of GaN-based LEDs significantly decreases during operation, and with the passage of time, many mechanisms responsible for the degradation of such devices start playing their roles. Only a few attempts, to explore the reliability of these LEDs, have been presented so far which provide very little information on the output power degradation of these LEDs with the passage of time. Therefore, the aim of this review is to summarize the degradation factors of AlGaN-based near UV-LEDs emitting in the range of 200-350 nm by means of combined optical and electrical characterization so that work groups may have an idea of the issues raised to date and to achieve a wavelength range needed for disinfecting the environment from SARS-CoV-2. The performance of devices submitted to different stress conditions has been reviewed for the reliability of AlGaN-based UV-LEDs based on the work of different research groups so far, according to our knowledge. In particular, we review: (1) fabrication strategies to improve the efficiency of UV-LEDs; (2) the intensity of variation under constant current stress for different durations; (3) creation of the defects that cause the degradation of LED performance; (4) effect of degradation on C-V characteristics of such LEDs; (5) I-V behavior variation under stress; (6) different structural schemes to enhance the reliability of LEDs; (7) reliability of LEDs ranging from 220-240 nm; and (8) degradation measurement strategies. Finally, concluding remarks for future research to enhance the reliability of near UV-LEDs is presented. This draft presents a comprehensive review for industry and academic research on the physical properties of an AlGaN near UV-LEDs that are affected by aging to help LED manufacturers and end users to construct and utilize such LEDs effectively and provide the community a better life standard.

3.
2nd International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies, ICAECT 2022 ; 2022.
Article in English | Scopus | ID: covidwho-1961379

ABSTRACT

Currently the health system continues to fight against the pandemic caused by SARS-CoV2 because this virus has not yet disappeared and there are still outbreaks of infections in several places, this generated in people an indecision of what it can generate later since this virus generated a change in the world. Being a contagious and fast-spreading virus, WHO called on all governments to take appropriate measures to stop the spread of COVID-19 as there were many infected. Given this, there are people who need the care of a doctor because they suffer from a disease and that this implies the extraction of blood for a deep analysis or to place an intravenous injection in the patient's forearm, but in many cases the distribution of the veins can not be visualized and this hinders the work of the doctor. In view of this problem, in this article an automatic vascular detection system was carried out for the part of the forearm of patients and to be able to visualize the subcutaneous vein so that the doctor has access quickly and help the patient in an emergency. Through the development of the system, it was observed that it works in the best way, since in its development a 97.69% efficiency was obtained by showing the binary image where the distribution of the veins is observed taking 8.74 seconds, being an accepted value so that it can be implemented in several medical centers. © 2022 IEEE.

4.
Acs Photonics ; 9(5):1513-1521, 2022.
Article in English | Web of Science | ID: covidwho-1895566

ABSTRACT

The COVID-19 pandemic has generated great interest in ultraviolet (UV) disinfection, particularly for air disinfection. Although UV disinfection was discovered close to 90 years ago, only very recently has it reached the consumer market and achieved much acceptance from the public, starting in the 2000s. The current UV light source of choice has been almost exclusively a low-pressure mercury vapor discharge lamp. Today, however, with emerging deep-UV (DUV) chip-scale technologies, there has been a significant advancement, along with ever-increasing interest, in the development and deployment of disinfection systems that employ compact devices that emit in the deep-UV spectral band (200- 280 nm), including UV light-emitting diodes (LEDs) and cathodoluminescent (CL) chips. This perspective looks into competing UV technologies (including mercury lamps and excimer lamps as benchmarks) on their optical merits and demerits and discusses the emerging chip-scale technologies of DUV electroluminescent and cathodoluminescent devices, comparing them against the benchmarks and providing an overview of the challenges and prospects. The accelerating progress in chip-scale solutions for deep-UV light sources promises a bright future in UV disinfection.

5.
Gallium Nitride Materials and Devices XVII 2022 ; 12001, 2022.
Article in English | Scopus | ID: covidwho-1891717

ABSTRACT

In the last year the market of ultraviolet (UV) light-emitting diodes (LEDs) had a huge increase due to the higher demand of devices caused by the pandemic crisis. In fact, it was demonstrated that UV LEDs, and in particular UV-B and UV-C LEDs, could be used as efficient sources for the disinfection of surfaces against Sars-CoV-2. In this work, we investigated electrical, optical and spectral degradation mechanisms in a series of commercial UV-C LEDs (275 nm - 280 nm) available on market. We present an exhaustive comparison of the main sample characteristics, studying their evolution when the LEDs are submitted to constant current stress tests (for about 350 h) at the absolute maximum current indicated in the respective datasheets. In particular, we carried out an extensive set of measurements, including current-voltage (I-V), optical power-current (L-I) and power spectral density (PSD) characteristics at various steps of stress, combined with the analysis of the drive voltage during the tests and of the thermal droop of the devices. We found: (i) a set of LEDs with a promising L80 of 10000 min (about 170 h), (ii) the presence of parasitic peaks and bands in all devices, ascribed to radiative recombination outside the QWs, and (iii) a substantial increase in thermal droop in all LEDs due to a decrease in injection efficiency and an increase in SRH recombination events during the stress tests. © 2022 SPIE. All rights reserved.

6.
Photobiomodul Photomed Laser Surg ; 40(4): 273-279, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1830952

ABSTRACT

Objective: We report on the development and characterization of a UV-C light-emitting diode (LED) 280 nm cluster prototype device designed for the rapid disinfection of SARS-CoV-2 coronaviruses. The device was evaluated against the Betacoronavirus mouse hepatitis virus-3 strain, and its virucidal capacity was probed as a function of different applied UV-C doses versus different situations concerning irradiation distances. Background: UV-C LEDs are light emitters that offer advantages over low-pressure mercury lamps, such as quasimonochromaticity, lower electrical power consumption, instant on/off with the instant full-power operation, unlimited on/off cycles for disinfection schemes, and a much longer lifetime operation, in addition to portability aspects, as well as UV-C LEDs do not contain heavy metal in its composition such as mercury, found in ultraviolet germicidal irradiation (UVGI) lamps. Results: This novel device reached a 99.999% elimination rate at a distance of 9 cm at all the tested irradiation times (dose dependence), demonstrating that it took only 30 sec to achieve this inactivation rate. Its virucidal effectivity in rapid virus inactivation was demonstrated. Conclusions: We conclude that the HHUVCS cluster device (λp = 280 nm) provides a rapid virucidal effect against the SARS-CoV-2 coronavirus. The current research should encourage further advances in UV-C LED-based devices designed for the inactivation of SARS-CoV-2 virus on surfaces, in air, and in liquids.


Subject(s)
COVID-19 , Mercury , Animals , Disinfection , Mice , SARS-CoV-2 , Ultraviolet Rays
7.
SAE 2022 Annual World Congress Experience, WCX 2022 ; 2022.
Article in English | Scopus | ID: covidwho-1810904

ABSTRACT

The author has been conducting research on UV based photocatalytic air purifier systems for the past 5 years to eliminate living organic germs, bacteria, pathogens, etc. from the cabin air. An HVAC system has been developed by using a filter impregnated by titanium di-oxide (TiO2) with UV lights to improve and maintain cabin air quality. The designed system can be used for conventional vehicles, EVs, ride sharing and for autonomous vehicles. The author has designed and constructed a 3rd generation HVAC unit for cabin air purification for automobiles that is based on UV photocatalytic process by using UV-C LEDs to eliminate viruses that typically exist in conditioned space. The author has conducted tests with the following viruses and bacteria that are typically encountered in a conditioned environment:(i)Staph Epidermititus: Infections in wounds (Anthrax)(ii)Erwinia Herbicola: Bacteria (Infection in soil and water)(iii)MS2: RNA, COVID-19(iv)Phi-174: DNA, Herpes and HIV(v)Bacillus Globigii: Virus - influenza(vi)Aspergillus Niger: Mold spore (Black mold) Percentage destruction rates for the above viruses and bacteria at 15, 30, 45 and 60 minute intervals are presented in this paper. The developed system is able to reduce the viruses by almost 99.99#x00025;(log 4 reductions) in first 15 minutes of unit operation. Aspergillus Niger destruction rates were lower - approx. 90.3#x00025;in 15 minutes (log 1 reduction). The developed system out performs the industry standard of log 4 reductions in 60 minutes! Using a UV-C and UV-A LED light sources with titanium dioxide filter makes this a unique application for automobile HVAC systems. Additional tests have been planned in 2022 to ensure the developed system is able to eliminate Omicron, a variant of COVID-19. © 2022 SAE International. All Rights Reserved.

8.
Aims Bioengineering ; 9(2):93-101, 2022.
Article in English | Web of Science | ID: covidwho-1798847

ABSTRACT

The spread of infections, as in the coronavirus pandemic, leads to the desire to perform disinfection measures even in the presence of humans. UVC radiation is known for its strong antimicrobial effect, but it is also harmful to humans. Visible light, on the other hand, does not affect humans and laboratory experiments have already demonstrated that intense visible violet and blue light has a reducing effect on bacteria and viruses. This raises the question of whether the development of pathogen-reducing illumination is feasible for everyday applications. For this purpose, a lighting device with white and violet LEDs is set up to illuminate a work surface with 2,400 lux of white light and additionally with up to 2.5 mW/cm2 of violet light (405 nm). Staphylococci are evenly distributed on the work surface and the decrease in staphylococci concentration is observed over a period of 46 hours. In fact, the staphylococci concentration decreases, but with the white illumination, a 90% reduction occurs only after 34 hours;with the additional violet illumination the necessary irradiation time is shortened to approx. 3.5 hours. Increasing the violet component probably increases the disinfection effect, but the color impression moves further away from white and the low disinfection durations of UVC radiation can nevertheless not be achieved, even with very high violet emissions.

9.
Journal of Research of the National Institute of Standards and Technology ; 126:20, 2022.
Article in English | Web of Science | ID: covidwho-1780231

ABSTRACT

The goal of this project was to create and optimize the performance of portable chambers for reliable ultraviolet (UV) disinfection of personal protective equipment (PPE) and enable its safe reuse. During unforeseen times of high demand for PPE, such as during the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), single-use PPE supply can be quickly depleted. UV radiation has been shown to disinfect materials with high efficacy. This paper reports the design and construction of two 280 nm ultraviolet-C (UV-C) disinfection chambers in the form of portable chambers with 46 cm x 46 cm x 46 cm interior dimensions, one using light-emitting diodes and the other using mercury vapor lamps. This paper summarizes and presents a review of SARS-CoV-2 UV deactivation research during 2020 to 2021. Additionally, this paper discusses efforts to increase the uniformity and overall intensity of the UV-C radiation within the chambers through the installation of a UV-reflective, porous polytetrafluoroethylene (PTFE) material. A calculator prototype was additionally designed to calculate the reduction of SARS-CoV-2 as a result of UV-C disinfection, and the prototype code is presented. The paper describes the selection of UV-C radiation sources for the chambers and the chambers' mechanical and electrical design, PTFE installation, testing, and safety considerations.

10.
IEEE Journal of Quantum Electronics ; 2022.
Article in English | Scopus | ID: covidwho-1759123

ABSTRACT

AlGaN germicidal ultraviolet (GUV) light emitting diodes (LEDs) are one of the most promising disinfection technologies in fighting the COVID-19 pandemic;however, GUV LEDs are still lacking in efficiency due to low p-type doping efficiency in p-AlGaN. The most successful approach for producing conductive p-type AlGaN is the implementation of a polarization-enhanced short period AlxGa1-xN/ AlyGa1-yN superlattice (SL) structure, which enhances hole injection and reduces device operating voltage. In this report, we investigated different aspects of the superlattice including the AlxGa1-xN and AlyGa1-yN alloy constituent compositions, x and y, period thickness, total thickness, and Mg dopant concentration in terms of LED performance as well as electrical, optical, and morphological characteristics. The polarization-enhanced p-type doping in the AlGaN superlattice was also investigated computationally, giving excellent agreement with experimental results. Highly efficient UVC LEDs (279 nm) with EQE of 2% at 5 A/cm2 were demonstrated. A maximum output power of 5.5 mW (56 mW/mm2) was achieved at 100 mA. IEEE

11.
Advanced Materials Technologies ; 2022.
Article in English | Scopus | ID: covidwho-1733835

ABSTRACT

AlGaN-based deep ultraviolet light-emitting diodes (UV LEDs) have gained rapidly growing attention due to their wide applications in water purification, air disinfection, and sensing as well as optical communication. Moreover, deep UV radiation has been verified as one of effective way to inactivate COVID-19. However, although numerous efforts have been made in deep UV LED chips, the reported highest external quantum efficiency (EQE) of them is 20.3%, which is far lower than that of visible LEDs. The EQE of commercial packaged AlGaN-based deep UV LEDs is usually lower than 5%, which will cause serious reliability problems as well. Therefore, it is very urgent to improve EQE and reliability of the devices from packaging level. In this review, a systematical summarization about the packaging technologies of AlGaN-based deep UV LEDs has been analyzed and future prospects have been made as well. Firstly, this work provides a brief overview of the devices and analyzes why the packaging level reduces EQE and reliability in theory. Then, systematically reviews the recent advances in packaging technologies and deep UV micro-LEDs. Finally, conclusions and outlooks are given as well. This review is of great significance for promoting the development of the packaging technologies for AlGaN-based deep UV LEDs. © 2022 Wiley-VCH GmbH

12.
Materials Today Sustainability ; : 100117, 2022.
Article in English | ScienceDirect | ID: covidwho-1670929

ABSTRACT

The facemask is a potential device to protect yourself and others against pandemics, such as coronavirus disease 2019 (COVID-19), and adding a functional filter to the facemask could offer extra protection against infectious microbes (such as bacteria and viruses) to the wearer. Here, we designed and fabricated an always-on photocatalytic antibacterial facemask, which comprised a reusable polypropylene filter layer coated with the photocatalytic laminated ZnO/TiO2 bilayer and a separate UV-LEDs layer to supply UV whenever necessary. The fabricated photocatalytic filter was able to be directly inserted into the reusable facemask together with the UV-LEDs layer. This facemask could be used repeatedly and sustainably anytime and anywhere regardless of solar illumination. The photocatalytic filter exhibited an excellent photocatalytic antibacterial effect likely due to recombination suppression of electrons and holes of ZnO/TiO2 bilayer and wetting transition from hydrophilic to superhydrophilic state on the surface of the filter. Thanks to the kirigami pattern in both photocatalytic filter and UV-LEDs layer, full-face covering, breathability, flexibility, and the snug fit are believed to be improved. Although further in-depth studies are still needed and there is a long way to go, we expect our design idea on the facemask to be considered in various fields.

13.
Light Sci Appl ; 10: 129, 2021.
Article in English | MEDLINE | ID: covidwho-1275899

ABSTRACT

As demonstrated during the COVID-19 pandemic, advanced deep ultraviolet (DUV) light sources (200-280 nm), such as AlGaN-based light-emitting diodes (LEDs) show excellence in preventing virus transmission, which further reveals their wide applications from biological, environmental, industrial to medical. However, the relatively low external quantum efficiencies (mostly lower than 10%) strongly restrict their wider or even potential applications, which have been known related to the intrinsic properties of high Al-content AlGaN semiconductor materials and especially their quantum structures. Here, we review recent progress in the development of novel concepts and techniques in AlGaN-based LEDs and summarize the multiple physical fields as a toolkit for effectively controlling and tailoring the crucial properties of nitride quantum structures. In addition, we describe the key challenges for further increasing the efficiency of DUV LEDs and provide an outlook for future developments.

14.
J Photochem Photobiol B ; 212: 112044, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-799262

ABSTRACT

UV light-emitting diodes (UV LEDs) are an emerging technology and a UV source for pathogen inactivation, however low UV-LED wavelengths are costly and have low fluence rate. Our results suggest that the sensitivity of human Coronavirus (HCoV-OC43 used as SARS-CoV-2 surrogate) was wavelength dependent with 267 nm ~ 279 nm > 286 nm > 297 nm. Other viruses showed similar results, suggesting UV LED with peak emission at ~286 nm could serve as an effective tool in the fight against human Coronaviruses.


Subject(s)
Betacoronavirus/radiation effects , Ultraviolet Rays , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , RNA, Viral/metabolism , Radiation Dosage , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Virus Inactivation/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL